Satisfiability Modulo Theories: An Efficient Approach for the Resource-Constrained Project Scheduling Problem

نویسندگان

  • Carlos Ansótegui
  • Miquel Bofill
  • Miquel Palahí
  • Josep Suy
  • Mateu Villaret
چکیده

The Resource-Constrained Project Scheduling Problem (RCPSP) and some of its extensions have been widely studied. Many approaches have been considered to solve this problem: constraint programming (CP), Boolean satisfiability (SAT), mixed integer linear programming (MILP), branch and bound algorithms (BB) and others. In this paper, we present a new approach for solving this problem: satisfiability modulo theories (SMT). Solvers for SMT generalize SAT solving by adding the ability to handle arithmetic and other theories. We provide several encodings of the RCPSP into SMT, and introduce rcp2smt, a tool for solving RCPSP instances using SMT solvers, which exhibits good performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The preemptive resource-constrained project scheduling problem subject to due dates and preemption penalties: An integer programming approach

Extensive research has been devoted to resource constrained project scheduling problem. However, little attention has been paid to problems where a certain time penalty must be incurred if activity preemption is allowed. In this paper, we consider the project scheduling problem of minimizing the total cost subject to resource constraints, earliness-tardiness penalties and preemption penalties, ...

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

An Efficient Genetic Agorithm for Solving the Multi-Mode Resource-Constrained Project Scheduling Problem Based on Random Key Representation

In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) with minimization of project makespan as the objective subject to resource and precedence constraints. A random key and the related mode list (ML) representation scheme are used as encoding schemes and the multi-mode serial schedule generation scheme (MSSG...

متن کامل

An Optimization via Simulation approach for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problems

In this paper a novel modelling and solving method has been developed to address the so-called resource constrained project scheduling problem (RCPSP) where project tasks have multiple modes and also the preemption of activities are allowed. To solve this NP-hard problem, a new general optimization via simulation (OvS) approach has been developed which is the main contribution of the current re...

متن کامل

ROBUST RESOURCE-CONSTRAINED PROJECT SCHEDULING WITH UNCERTAIN-BUT-BOUNDED ACTIVITY DURATIONS AND CASH FLOWS I. A NEW SAMPLING-BASED HYBRID PRIMARY-SECONDARY CRITERIA APPROACH

This paper, we presents a new primary-secondary-criteria scheduling model for resource-constrained project scheduling problem (RCPSP) with uncertain activity durations (UD) and cash flows (UC). The RCPSP-UD-UC approach producing a “robust” resource-feasible schedule immunized against uncertainties in the activity durations and which is on the sampling-based scenarios may be evaluated from a cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011